Study on quality in 3D digitisation of tangible cultural heritage

Share

This unique study on 3D digitisation demonstrates that complexity and quality are fundamental considerations in determining the necessary effort for a 3D digitisation project to achieve the required value of the output.The overall aim of this study is to improve the quality of 3D digitisation projects for tangible cultural heritage, in support of European Union cultural heritage strategies.

The study, led by Cyprus University of Technology, has identified all relevant elements for successful 3D digitisation of cultural heritage, classifying them by degree of complexity and purpose or use. The study also looked at what determines the quality of a 3D digitisation project and made an inventory of existing formats, standards, guidelines and methodologies used by the industry.

This study will enable cultural heritage professionals, institutions, content-developers, and academics to define and produce high-quality digitisation standards for tangible heritage.
The elements of the framework include:
+ The technical parameters that determine the level of quality of 3D digitisation.
+ Existing digital formats, standards, benchmarks, methodologies and guidelines for 3D digitisation.
+ Past or ongoing 3D digitisation projects and existing 3D models and data sets that can serve as benchmarks.

Dr. Marinos Ioannides of the Digital Heritage Research Lab (DHRLab) at Cyprus University of Technology and Director of UNESCO Chair on Digital Cultural Heritage (CH) led this complex and all-encompassing project, working with nine important players in the industry and a number of external experts providing their research contributing to this exceptional study.

Access the Study and all Annexes


Summary

  • The 3D digitisation of movable and immovable cultural heritage can be an exceptionally complex process.
  • Factors such as the stakeholder requirements (available budget and time, expected use, required quality/accuracy), the characteristics of the object (size, geometry, surface, texture, material composition, state of conservation, location), the level of competence of the personnel involved and the type of equipment used, condition the production effort and have a direct impact on the quality of the final output.
  • There are no internationally recognized standards or guidelines for planning, organising, setting up and implementing a 3D data acquisition project.
  • As acquisition technologies and software systems become increasingly accessible, with photorealistic renderings now commonplace, it is even more crucial to understand the physics behind the hardware, the fundamentals of data capture and processing methodologies.
  • The definition of the complexity of a 3D digitisation project should cover both data capture and data processing (point cloud/modelling), should be calculated objectively, should be estimated before the data acquisition phase, should connect quality, technology and the purpose of use.
  • In cultural heritage projects, image-based data acquisition is usually preferred to other methods, such as laser scanning, because it is efficient, non-intrusive, easily deployable indoors and outdoors and low cost.
  • Quality parameters refer to different stages of the 3D digitisation process and vary depending on the type of tangible cultural heritage and the equipment and methodology used and the possible purposes or uses of the resulting 3D material.
  • There is no generally accepted standard for specifying the detail and accuracy requirements for geometric recordings of tangible objects. Accuracy refers to how close a measurement is to the true or correct value, whereas precision is how close the repeated measurements are to each other. A reliable survey instrument is consistent; a valid one is accurate.
  • There are no guidelines on ways and minimum amounts of data to be collected or the quality to be achieved during data acquisition, which entirely depends on the stakeholder requirements.
  • There is a pressing and urgent need for a technical specification to ensure interoperability and longer term sustainability of 3D data metadata and paradata, defining among other harmonised means to annotate 3D content, to combine 3D with audiovisual content, or to embed additional dimensions (e.g. time, material and story).
  • Advancements in 3D data acquisition software leveraging artificial intelligence will make 3D digitisation easier, faster, more accurate, and more informative. Faster connections, bigger bandwidth and lower latency, will improve real time global use and long-term availability and preservation, allowing to work with larger data volumes and bigger 3D models of higher resolution.
 

Leave a Reply


Related Articles

Heritage documentation, accessing and understanding through an inclusive approach for 3D reconstruct...
The conference, focused on the most innovative strategies of digital documentation for accessing and understanding European Cultural Heritage, will present the first year of  research activities of the project INCEPTION - Inclusive Cultural Heritage in Europe through 3D semantic modelling, funded by the European Commission within the Work Programme “Europe in a changing world – inclusive, innovative and reflective societies”, leaded by the Department of Architecture of the University of Fer...
Discover new source collections on Historiana featuring reused 3D heritage
  Explore two new source collections on Historiana, the online multimedia tool co-funded by the European Union that provides teachers with innovative, interactive resources to bring history to life and engage students. These collections feature 3D models digitised through the EUreka3D project. Discover a selection of 3D models of pre-cinema objects, digitised by the CRDI Centre for Image Research and Diffusion of the Girona City Council in collaboration with La Tempesta. This ...
Stunning new 3D collections digitised in the context of the EUreka3D project are now published on Eu...
  Step into the world of history and heritage through stunning 3D collections that bring the past to life. From pre-cinema artifacts in Girona to everyday objects and cultural emblems from the ancient oppidum of Bibracte in Burgundy, these collections offer a unique window into the lives and creativity of our ancestors. Digitised and shared in the context of the EUreka3D project, these treasures showcase the value of preserving and exploring our shared cultural heritage. The C...
How EUreka3D enabled the creation and reuse of 3D heritage – a new publication on Europeana
  The Digital European Programme-funded project EUreka3D has ended at the close of 2024. The two-year project marks a significant milestone in the field of 3D cultural heritage preservation and digitisation. It developed innovative technology and practices to push forward the boundaries of, and capacity for, 3D cultural heritage in the common European data space for cultural heritage. Explore its achievements and learn how the project’s work will continue through EUreka3D-XR i...